ribbon

ECI, Now Part of Ribbon

ECI

Optical Networking Demystified

Sam Lisle December 15, 2020

Ribbon for IP and Optical

• Ribbon acquired ECI Telecom in March, 2020

- Full line of Optical, Ethernet, and IP platforms
 - Pizza-boxes to multi-terabit, full-rack systems
 - Automated network management
- · Help service providers and electric utilities
 - Residential broadband backhaul networks
 - Mobile broadband backhaul networks
 - Wavelength services and optical networks
 - Carrier Ethernet services networks

Big Carrier Capabilities Small Carrier Packages

No one is dumb.... Just maybe unfamiliar...

- What can optical networks do for me?
- What are the major piece parts and vocabulary?
- What do I have to think about when I deploy?
- Any cool stuff on the market I should be aware of?

What Can an Optical Network Do for Me?

Only Optical Solves Capacity and Distance Challenges

A couple basics...

- Light exists as electromagnetic waves
- Different colors of light have different wavelengths
- The wavelengths have a distance measured in nanometers (nm)

What are the Key Pieces of an Optical System?

- Optical line system
 - Photonic (optical) "<u>colors</u>" not "bits"
 - Manipulates "wavelengths" (optical channels)
 - Delivers <u>capacity</u> and <u>distance</u>
 - <u>Analog</u>
- Transponders/muxponders/OTN switches
 - Electronic "<u>bits</u>"
 - Creates "wavelengths"
 - Adapts gray optics interfaces (like Ethernet)
 - Can mux/groom (or not) lower speed traffic into a wave
 - Manipulates OTN containers
 - Feeds the line system
 - <u>Digital</u>
- Management system
 - GUI, point and click
 - Helps you sleep at night...

Optical Line System, OTN Transponders/muxponders/switches, Management

What is a Transponder?

- Single client port
- <u>Single</u> wave port
- Rate of client and network port are roughly the <u>same</u>
- No "grooming"
- <u>3</u> functions
 - Terminates client
 - Transparently wraps the client signal in an OTN frame (electronics)
 - Adds 'forward error correction' (FEC) to achieve distance
 - Does not touch Ethernet VLANs or IP packets
 - Transmits the OTN-wrapped client on the correct "wavelength"
- Wavelength is now ready to join its other wavelength friends on the line system

What is a Muxponder? (Multiplexing Transponder)

- <u>Many</u> lower-speed client ports
- Single higher-speed wave port
- Saves wavelengths
- <u>4</u> functions
 - Terminates client optics
 - Transparently wraps each client signal in its own OTN container (electronics)
 - Does not touch Ethernet VLANs or IP packets
 - Multiplexes <u>many</u> low-order OTN containers into <u>one</u> bigger high-order OTN container
 - Adds 'forward error correction' to achieve distance
 - Transmits the high-order OTN container on the correct "wavelength"
- Wavelength is now ready to join its other wavelength friends on the line system

What is OTN Switching?

- <u>Ability to groom across</u>
 - Many lower-speed client ports
 - Many wavelength ports
- Save wavelengths more protection options
- <u>5</u> functions
 - Terminates client optics
 - Transparently wraps each client signal in its own OTN container
 - Does not touch Ethernet VLANs or IP packets
 - Rearranges OTN containers "any to any"
 - ODU cross-connecting hairpinning, passthrough, add/drop
 - Transmits the OTN containers on the correct "wavelength"
- Wavelengths are now filled with clients as you want them

OTN Containers

Any type of client signal: Ethernet, SONET, Fiber Channel, etc.

ribbon

ECI THE ELASTIC NETWORK

What are the Functions of a Line System?

- Combining many waves together onto a single fiber to achieve <u>capacity</u>
 - Wavelength division multiplexing
- Manipulating wavelengths
 - Added/dropped/passed through/switched
 - Optical ADM
 - ROADM (Reconfigurable Optical Add/Drop Multiplexer)
- Taming the wild, nasty effects of analog transmission to achieve <u>distance</u>
 - Amplification
 - Dispersion compensation

Combining Waves using Wavelength Division Multiplexing (WDM)

• DWDM – dense WDM

- Up to 128 channels with 37.5GHz spacing of each channel
- Channels can be up to 400G or greater
 - (may need wider spacing depending about how far you want to go)
- Can be amplified for long distances
- Started in long haul, penetrated metro, now in access
- CWDM course WDM ("coarsewave")
 - Up to 18 channels (usually only up to 8)
 - 20nm wide spacing (2500GHz spacing)
 - Best for 2.5Gb/s and below channels
 - Limitations for amplification distance limited to ~60km
 - Helps with capacity, but not distance
 - Decreasing use...

DWDM "Grids"

Each wavelength consumes spectrum in the C-Band

What Determines How Much Spectrum I Use for Each Wavelength?

- 10G transponders/muxponders are simple
 - 10G waves typically use 50GHz or 100GHz spectral grid
 - Intensity modulation
 - Direct detection presence of light = "1"; absence of light = "0"
- 100G+ transponders/muxponders are more flexible
 - "Multihaul" transponders/muxponders
 - Many "knobs" to turn
 - Tradeoffs for line rate and spectrum and distance
 - QAM modulation and coherent detection
- · FlexGrid allows the line system to accommodate these trade-offs

Transponder Options

Example: "100"Gb/s line = 34GBaud x 2 bits / symbol x 2 polarizations

No Free Lunch...

- Increasing baud rate
 - Improves transceiver efficiency (bits/device)
 - Increases spectrum required
- Increasing modulation
 - Improves spectral efficiency (bits/Hz)
 - Decreases distance

Fixed Baud Rate X Fixed Modulations

X Fixed Modulations

Service Provider World -Needs <u>Better</u> Knobs and <u>More</u> Knobs

Performance Optimized Transport – 3 better knobs

Adaptive Baud Rate

Satisfy Customer Demand in the Real World

Manipulating Wavelengths...

- Point to point only
 - All waves going in Site A come out at Site B
 - Just mux many waves onto one fiber
- Fixed Optical Add/drop Multiplexers (FOADMs)
 - Cheap hardware, but requires truck roll and manual configuration at site B
- Reconfiguration Optical Add/drop Multiplexers (ROADMs)
 - "Static"
 - "Colorless" (C)
 - "Colorless-directionless" (CD)
 - "Colorless-directionless-contentionless" (CDC)
 - <u>Automates</u> wave manipulation to create larger networks

Brute Force Networking

- Multiplex and demultiplex all waves at each site
- Use patch panel to manually patch through or add/drop at each site flexible
- Heavy loss at each site for through waves

A Little Better – Fixed OADM units

- Add/drop <u>pre-determined</u> channels at intermediate sites
- Pass remaining channels through without demultiplexing - simpler
- Better performance (less loss) for through channels

Site A Site B Site C Site D Site D Site C Site D Site D Site C Site D Si

• Less flexibility

ROADM Networking – Where Networks are Trending

- Wavelength selective switch (WSS) devices at each ROADM node
- Add/drop/passthrough wavelengths via remote provisioning
- WSS devices offer many other benefits
 - Dynamically balance the power between all wavelengths sharing a fiber
 - Dynamically control the input power of incoming waves
 - Automated multi-degree sites north/south/east/west
 - Reconfigure wavelength paths to avoid cable maintenance or to perform restoration

Different Types of ROADMs (different types of add/drop hardware)

It's Analog - What Can Possibly Go Wrong???

- Optical attenuation (loss)
 - Wavelengths lose power
 - Receiver can't determine a "one" from a "zero" _
 - OSNR (optical signal to noise ratio) becomes too low
- Dispersion
 - Pulses of light spread out as they travel _
 - Receiver cannot determine a one pulse from another _
- Non-linear effects
 - Wavelengths can trample on other wavelengths
- The fiber itself is damaged
 - Or a connector is broken...

Fix this with

- Dispersion compensation 10G

Overcome this with

- Optical network design

Fix this with

- Armed guards and eternal vigilance React quickly or proactively with - Automated, network OTDR

Attenuation (loss) Reduces Optical Power

- Losses from
 - fiber
 - WSS devices
 - mux/demux and filters
- Amplifiers (EDFAs*) boost the power
 - Of ALL** waves on the fiber!
 - Without terminating ANY of them!
 - Without electronically repeating each signal!
 - Key to optical networking economics!
 - Amps do not understand bits or wavelengths
 - Amps only understand optical power.
- Amps create noise
 - Only so many amplifiers in the chain before the signal/noise ratio is ruined

**all waves together on fiber is called a "composite" signal

*EDFA = Erbium Doped Fiber Amplifier

No Free Lunch in the Analog World

Dispersion – When Pulses Spread out Down the Fiber – 10G waves and below

- Leading edge of pulse travels faster than trailing edge
- Pulses bleed together causes bit errors
- Applicable in 'direct detected' systems
 - 10G waves and below
- Largely eliminated in "coherent" systems
 - 100G and above
- Fix with Dispersion Compensating Fiber
 - In a dispersion compensation module (DCM)
 - Special fiber in the data path
 - Deployed at the receiver
 - That "undoes" the pulse spreading
 - Causes loss
- DCMs will worsen the performance of >100G waves that may come later

Network OTDR Helps you Predict and React to Fiber Failures

- Optical Time Domain Reflectometer is test equipment that finds fiber defects
- "Network OTDR" is an OTDR <u>deployed in</u> the existing fiber plant
- <u>In-service</u> alongside other equipment (from any vendor)
- Scans automatically multiple fibers at once for defects or cuts and raises alarms
- Enables fault location to within meters
- Dramatically reduces repair time and opex costs

Technology, Design, and Deployment Considerations

- Things that impact distance...
 - Will I need to add sites and grow my network geographically?
- Things that impact capacity...
 - Will I be rolling out higher speed residential broadband?
 - Will I be offering mobile backhaul services for 5G?
- Things that impact operations...
 - Am I reducing my operational staff?
 - Am I trying to cover a larger geographical footprint?

What are Things that Help Me with Smaller Optical Networks

- Neptune[™] Ethernet/IP platforms with "just right" optical additions
 - Amplifiers + WDM to extend capacity and distance for a low cost
- Apollo[™] Micro-ROADM
 - Future-proofing benefits of FlexGrid
 - Automation benefits of ROADM
 - Pluggable amplifiers
 - Industry's smallest package
- Apollo 9901 and 9904 OTN Appliances
 - Switching for the price of muxing
- LightSOFT[™] Network Management
 - Point and click GUI for Optical, Ethernet, and IP
 - Runs Network Planner[™] software
- LightPULSE[™] Network OTDR
 - Automatically find degradations before failures occur
 - Identify the location of failures to within minutes instantaneously

Here to help...

Elizabeth Page Sales Director Ribbon Communications <u>epage@rbbn.com</u> 919.889.8257 Raleigh, NC area

Bruno Grad VP - Solutions Engineering Ribbon Communications Bruno.grad@rbbn.com 754.223.9329 Ft. Lauderdale area Sam Lisle Architectures and Solutions Ribbon Communications <u>sam.lisle@rbbn.com</u> 214.552.3500 Dallas area

ribbon

ECI, Now Part of Ribbon

Thank you!!